Search results for "Cold gases"
showing 4 items of 4 documents
Phase separations induced by a trapping potential in one-dimensional fermionic systems as a source of core-shell structures
2018
Ultracold fermionic gases in optical lattices give a great opportunity for creating different types of novel states. One of them is phase separation induced by a trapping potential between different types of superfluid phases. The core-shell structures, occurring in systems with a trapping potential, are a good example of such separations. The types and the sequences of phases which emerge in such structures can depend on spin-imbalance, shape of the trap and on-site interaction strength. In this work, we investigate the properties of such structures within an attractive Fermi gas loaded in the optical lattice, in the presence of the trapping potential and their relations to the phase diagr…
Small-amplitude collective modes of a finite-size unitary Fermi gas in deformed traps
2019
We have investigated collective breathing modes of a unitary Fermi gas in deformed harmonic traps. The ground state is studied by the Superfluid Local Density Approximation (SLDA) and small-amplitude collective modes are studied by the iterative Quasiparticle Random Phase Approximation (QRPA). The results illustrate the evolutions of collective modes of a small system in traps from spherical to elongated or pancake deformations. For small spherical systems, the influences of different SLDA parameters are significant, and, in particular, a large pairing strength can shift up the oscillation frequency of collective mode. The transition currents from QRPA show that the compressional flow patte…
Large-N kinetic theory for highly occupied systems
2018
We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components N of the underlying scalar quantum field theory. Extending previous studies, we demonstrate that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-N kinetic equation for a highly occupied system far from equilibrium. T…
New state of matter: heavy-fermion systems, quantum spin liquids, quasicrystals, cold gases, and high temperature superconductors
2018
We report on a new state of matter manifested by strongly correlated Fermi systems including various heavy-fermion (HF) metals, two-dimensional quantum liquids such as $\rm ^3He$ films, certain quasicrystals, and systems behaving as quantum spin liquids. Generically, these systems can be viewed as HF systems or HF compounds, in that they exhibit typical behavior of HF metals. At zero temperature, such systems can experience a so-called fermion-condensation quantum phase transition (FCQPT). Combining analytical considerations with arguments based entirely on experimental grounds we argue and demonstrate that the class of HF systems is characterized by universal scaling behavior of their ther…